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There are a few tools for thinking about this talk and they are isomorphism, paradoxes, formal systems, 
recursion, self-reference and infinity.  
 
An isomorphism is essentially a correspondence or similarity between two ideas. Two rooms are 
isomorphic to each other. A car is isomorphic to a skateboard. Et cetera. The rest of the words are self-
explanatory. 
 
My talk will exclusively focus on the structure of logic, using a few tools from mathematics to tell you 
how there are inherent limitations on mathematics. People who inspired me to be here are Douglas 
Hofstader when I read his book Godel, Escher Bach: Eternal Golden Braid, Gregory Chaitin’s lectures and 
the life of Godel and Alan Turing. How many people are familiar with the names? Gregory Chaitin’s book 
“The Quest for Omega” is another good read. You might also be interested in “A World Without Time: 
Forgotten legacy of Einstein and Godel” by Palle Yourgrau. Einstein and Godel were very good friends. 
 
My motivation won’t be to discuss any philosophical issues associated with this topic. That is going to be 
open for the room to decide because there are lots of ways of looking at this talk. I’ll be focusing on the 
theoretical approaches to this talk, even though the main motivation that drove these persons was 
intensely philosophical. For example, Hofstader’s book essentially aims to discuss how and why 
meaningless little symbols take complete meaning and then basically to think why atoms give us a 
conscience, how they make the “I”. I won’t be discussing any of that. That is going to be your corner. 
 
The messages to take home from my talks are two: thinking and metathinking. Thinking is like thinking 
in a system and metathinking is thinking outside the system. I think this is very important because these 
concepts have given rise to Montessori education and because it’s by thinking out of the system that 
Karl Marx gained his reputation. 
 
There are three types of paradoxes. Falsidical, Veridical, Antimony. Falsidical paradoxes are the result of 
a false reasoning and seem very counter-intuitive like the Birthday Paradox. Veridical’s are based on a 
weak form of reasoning because of the absence of tools. Examples of such paradoxes are Zeno’s 
paradox or the Twin Paradox. I’ll be focusing on the third type. How many over here have taken a course 
on Discrete Mathematics? You might need a little grip on logic. I’ll revisit that area. 
 
Before I indulge in telling you about this tool of paradoxes, let me just skim over the theory of 
formalism. 
 
Physics: Theories ➔ Experiments and Calculations ➔ Predictions for observation 
Computing: Programme ➔ Execution on a computer ➔ Output 
Mathematics: Axioms ➔ Reasoning ➔ Theorems 
 
We’ll be visiting this chain again and again. 
 
When I first read Einstein’s paper on general relativity, it was in German. Then, I got a translated version 
and then thought that this might as well have been in German all the same! Reason: Mathematics uses a 



formal system of rules which only a person trained in the mechanism of it can decipher, which is what 
we as mathematicians have learned. 
 
Let’s say we have a system that is only indicated by x p y q z where x, y, z are variables and p and q are 
fixed symbols. Let’s say that a theorem in this system holds is true if x + y = z. If x, y, z represent a string 
of hyphens only, then, for example, -- p --- q ----- is a theorem while - p - q - is not. Notice that this 
entails our usual concept of addition if we believe p represents plus and q represents equal.  This system 
may not be the most useful of all systems but it provides a good insight as to why mathematicians like 
formalising or mechanising their language. It has to do with a representation of ideas. The same system, 
however, would be very useless if x y and z were other objects. For instance, if x = happy, y= horse and 
z= apple, then, in our sytem, a theorem would read happy p horse q apple apple or happy happy p horse 
horse horse q apple apple apple apple apple. 
  
Moral: All formalism has a motivation. 
  
Logic follows the same principles. We all would like to thank Aristotle, the Stoics, Kurt Godel, John Venn, 
David Hilbert, de Morgan and all the rest who have helped formalise our thinking processes. Question is: 
was it empirical? Or was it a product of hard thinking? That is where people divide and I will not delve 
into the topic and leave the question open. 
 
Now, let me just introduce a few principles. p ➔ q. Equivalently, ~q ➔ ~p. For example, If something is 
a bat, then it is a mammal." The contrapositive is, "If something is not a mammal, then it is not a bat." 
One can essentially switch between both. The symbol  means if and only if, compactly written iff 
which means both p ➔ q and q ➔ p, so essentially they’re the same thing. The if and only if is a 
stronger version. It’s like saying that p and q are equivalent. 
 
There was this man called Goerg Cantor who single-handedly invented set theory in the 20th century. 
Before that, 19th century mathematics was just hard analysis and formulae. Like Taylor series, 
polynomials and number theory but then Cantor introduced Set Theory and revolutionised mathematics 
and made everything wishy-washy. What are sets? You just take an objects, throw them into a collection 
and you have a set. You just need to define your “box”, so things are in simple language, too. 
 
Why did Cantor do that? Well, he was mostly interested in theology. He wanted to know what infinity 
was. In fact, he ended up introducing smaller infinities and bigger infinities and called God as the 
absolute infinity. Let me show you how and why. 
 
1, 2, 3, …, ω, ω + 1, ω + 2, …, ω·2, ω·2 + 1, …, ω2, …, ω3, …, ωω, …, ωωω, …, ε0, .. 

 
We can already see why this was mostly theological. This is where things start to blow up.  
 
This had some serious issues. In 1897, the Burali-Forti paradox was stumbled upon. It essentially asks us 
to imagine a set of all ordinal numbers Ω. Ω itself is an ordinal number because it carries all the 
properties of ordinal numbers and would be in the set. Also, Ω + 1 would be in the set. Thus we end up 
with Ω < Ω + 1 <= Ω. It essentially says that there isn’t a biggest ordinal number and that is theologically 
very troubling. I won’t go into the technical details of the matter because I’ll be discussing an equivalent 
paradox. The heart of the problem lies in the word “all”. How? We’ll see shortly. 
 



Even though this paradox existed, mathematicians loved Set Theory. David Hilbert called it a paradise 
that no one could expel mathematicians from. A few mathematicians didn’t. Like Henri Poincaire, the 
famous French mathematician called Set Theory a disease from which he expected future generations to 
recover but not all mathematicians took the same approach. Topology was completely formulated in 
terms of sets. Everything began to take shape in the form of sets. Here are two beautiful concepts as a 
result of set theory: We can have sets and subsets. Each subset has the cardinality 2^n, where n is the 
size of the original set. Since the real numbers are infinite (their size is actually denoted by the Hebrew 
letter aleph with a nought in the subscript), then all the subsets of the real numbers have a size of 
2^aleph-nought. This is a bigger infinity. It’s called aleph-one. There an infinite amount of them even 
between two decimals. Also, we can say that the size of the natural numbers is the same as that of the 
integers. It introduced the concept of things that we can count even if we can count them forever and 
that of the things that we couldn’t possibly count, no matter what. Set theory also gave mathematicians 
the idea of space and dimension. A space is basically a set is with a given structure. That’s how 
mathematicians define space. Lastly, well, look. A line, if doubled in one dimension, creates two. A 
square, if doubled in two dimension, gives us four squares. A cube, if doubled in three dimensions, gives 
us eight cubes and so on. For a triangular fractal, the Sierpinski triangle, this is 2d = 3 because you halve 
the width and height and you get three triangles. This gives us d=1.55 approx. I think this is pretty cool.  
 
Set theory was pretty interesting. It solved many problems and opened new dimensions. Mathematics 
since then has been grounded on set theory, logic and number theory. 
 
I am going to start with a brief introduction on paradoxes. The antimony paradox is a statement “p iff 
not p”. For example, let’s start with the Barber’s paradox. Suppose there is a town where there is just 
one barber. The barber shaves all those men and only those men that do not shave themselves. The 
question is, does the barber shave himself? Each possibility implies its negation “This sentence is false” 
is a paradox. “I am a liar” is another. If meaningless is meaningless, then meaningless is meaningful but if 
meaningless is meaningful, then meaningless is meaningless. If a paradox is a paradox, then a paradox is 
not a paradox. If a paradox is not a paradox, then a paradox is a paradox.  
  
It is reasonable to question if our system of logic is consistent i.e. if a proposition and its negation carry 
the same value or not. A paradox p is both true and false. If our system is consistent, then a paradox has 
no place in our system of logic. You wouldn’t want two contradictory statements stemming from the 
same axioms. If it does, then you’re in trouble. 
  
Logicism believes that all mathematics is reducible to logic. If the foundations of set theory are under 
attack, mathematicians have a good reason to panic. Let’s attack mathematics, then. Let’s just say that 
there is a set of all sets S which are not a member of themselves. Does S belong to S? The answer is yes 
and no. 
  
The Barber Paradox and the set paradoxe are a result of “faulty” axioms. It says that we can’t have a 
universal set. Formally, there’s a function of choice that takes care of these matters. It just doesn’t allow 
the construction of such sets. Okay, that’s one way of sweeping the problem under the carpet. There 
have been ways to overcome these horrendous problems by correcting a few places of the system, such 
as the Zermelo–Fraenkel set theory with the axiom of choice but how far can we go in producing such a 
system? When will it be “complete”? i.e. when will we have derived all the possible truths from a few 
axioms? This question was posed by David Hilbert as a second problem in his famous 23 problems in 
1900 that asks to have arithmetic with axioms that would derive all theorems. David Hilbert came to 
rescue mathematics because in the early 20th century, right after the Burali-Forti paradox, many 



paradoxes were emerging and that wasn’t a healthy sign for mathematics. There was a need for an 
artificial language that could live free of paradoxes – a language that could be objective and mechanical 
and black and white and unlike the real world that is pretty messed up. 
 
Another goal behind Hilbert’s programme was to have a mechanical proof checker. So, basically, if one 
has a proof-checker, that essentially means it can recognise all the arguments of a proof. That’s also how 
mathematics would get complete by being able to differentiate between an axiom and a theorem. 
 
Godel answered Hilbert’s question in negative because of Godel’s incompleteness theorem which states 
that “a system cannot be both consistent and complete”. That’s the first incompleteness theorem. Yes, 
they were two! Consistent means that in the same system, a statement and its negation can never have 
the same truth values. A system is complete if it contains all the theorems it can contain. A theorem is 
always a true statement in that system. Godel proposed two theorems. Any system cannot be both 
consistent and complete. Secondly, if a system is self-verifying, then there are statements that cannot 
be proven in the system. This second theorem is a stronger version of the first theorem. Why? Because 
he showed that there exists a theorem that is not provable viz. "This theorem G is not provable” for if G 
was provable, then the system would be inconsistent but if it was otherwise, then lo and behold, we’re 
limited! 
 
There is, however, this proof called Gentzen’s consistency proof in Proof Theory that uses various 
arguments to prove that says that essentially it’s not about proving whether a system is consistent but 
it’s about whether the logical principles are firmly grounded. This is one reason mathematicians still 
have hope. It is argued, however, that what Godel showed implied that a system which satisfies the 
necessary hypothesis Godel chose cannot prove its own consistency and that a different system is 
needed to prove the consistency of that system. Also, ironically, Godel had a completeness theorem. It 
said that any system that uses the principles of logic is bound to be consistent and hence complete. 
Should mathematicians hope? Can they have a higher mathematics? You and I need to find out. 
  
What now? 
 
There cannot exist a theory of everything. For, suppose there exists a theory of everything that explains 
all those theories that cannot explain themselves. Question is, can the theory of everything explain 
itself? If the theory of everything can explain itself, then the theory of everything does not need the 
theory of everything to explain itself or that the theory of everything cannot explain itself. If the theory 
of everything cannot explain itself, then by the definition of the theory of everything, it can explain 
itself. The existence of a story of everything leads to a contradiction. In 2002, Stephen Hawking gave a 
lecture titled “The end of physics” arguing why he gave up hope of ever having a theory of everything. 
Much like the mathematical community, the physics community just shrugged their shoulders and 
continued. This may partly be because people are willing to give up some answers at the cost of self-
verification and consistency. 
 
This had implications for Turing. Can we have a computer programme that decides which programme 
will run for an infinite time and which programme will halt after a finite time? In other words, can we 
have a programme checker? Suppose there exists a computer programme X that takes all other 
programmes as input I. X prints “halts” if a programme I will not run indefinitely and X prints “loops 
forever” if I does not halt. What happens if I=X? If X loops forever, then X will halt but if X halts, then X 
will loop forever. This is related to the Incompleteness theorem by the following: there cannot be any 
method to check whether any theorem is true or not. 



 
This paper was published in 1936 titled “On Computable numbers and applications to the 
Entscheidungsproblem”. This was the Entscheidungsproblem which Hilbert had proposed. The second 
part of this talk will now focus on what it has to do with computable numbers. 
 
Real numbers are infinite. No machine can compute the complete list of the numbers. It has to 
terminate at some point. A computable real number is the one that can be computed with an arbitrary 

degree of accuracy. However, these are very few. Pi, for example, can be computed by ∑
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purpose computer with his 1936 paper. The original development was an engineering problem, as far as 
I’m concerned. Turing used the idea of a machine which was later called a Turing Machine. 
 
So the computer is actually the result of a failure. We’re all benefitting from the result of a failure. This 
failure gave us Google. The computer business, the digitalisation of society, has been flourishing ever 
since and it is outrageous to note that the computer is the result of a failure. 
 
Now, mathematicians worry a lot when they find a statement that has no proof let alone the fact that it 
can never have a proof. They’d rather die that give up on it. So they tried to change axioms but like I’ve 
said, that would’ve been useless. Many mathematicians were in a state of shock but then shrugged their 
shoulders and continued with mathematics. In the 1920s, there was a parallel crisis in physics of 
Quantum Theory that had a lot to do with giving up locality and determinism in the favour of 
randomness – “God does not play dice” and all. Then the World Wars came up and this whole idea 
seemed to be buried in dust until Gregory Chaitin revived them. He had been observing all these as a 
child. He used the idea of randomness and brought it to mathematics. Maybe that instance wasn’t the 
only instance. Maybe there was more to it – tip of the iceberg. Maybe sometimes you can’t prove 
something because it has no solution or because we’re not smart enough but because it’s not there. 
May be God does play dice. May be the answer has no pattern, no structure. This idea is not foreign. 
There is work in mathematics that suggests a probabilistic distribution of primes numbers. Some 
numbers are also considered to have normally-distributed decimal figures. This is also done with any 
base so you can see that it’s not just numbers but something greater than that. 
 
So like Quantum Mechanics was incorporated into Physics, randomness was incorporated into logic by 
Gregory Chaitin.  The OED defines randomness as “having no definite aim or purpose; not sent or guided 
in a particular direction; made, done, occurring, etc., without method or conscious choice; haphazard” 
but what is randomness to a mathematician? This had to be defined. 
 
An idea or statement is random if it can’t be compressed any further. This is like theorems. This can be 
translated in terms of a programming language. The chain in the beginning says all. Also, it’s about 
physics and the world, too!  
 
So it really is the lack of structure or order, order or pattern. So there is no precise theory that explains 
it. How is this relevant? Because then no axioms that can be used to derive it.  
 
By the way, Occam’s Razor? Any one?  
 
It’s not exactly unpredictability but something like it. 
 



A computer programme is random if the execution is same as the algorithm. Examples are printing a few 
irrational numbers.  
 
The subject called Algorithmic Information Theory was developed. It had ideas for complexity. This is 
just the amount of bits of a programme. Leibniz had clearly mentioned this idea. Complexity is essential 
because we are going be discussing the size of the algorithm or the theory. 
 
Now we can also take theory as something of a programme or a theorem. So, essentially, this translates 
into mathematics. And physics for that matter. 
 
What does this imply? Godel’s incompleteness theorem every where you turn 
 

• You can’t tell if a statement is random or not. Impossible 

• You can’t tell the complexity of a programme. This is stated directly from the Halting Problem. 

• Instead, we can calculate only upper bounds but not lower bounds. This is bad because not all 
the smart algorithms can be known, then. 

• Then we have the Halting probability. 
 
It’s donated by the number omega. It’s not a constant but varies so it’s called Chaitin’s Construction 
rather than Chaitin’s Constant. How does it work? Suppose that the computer we are dealing with has 
only three programs that halt, and they are the bit strings 110, 11100 and 11110. These programs are, 
respectively, 3, 5 and 5 bits in size. If we are choosing programs at random by flipping a coin for each  
bit, the probability of getting each of them by chance is precisely 1/23, 1/25 and 1/25, because each 
particular bit has probability 1/2. So the value of omega (the halting probability) for this particular 
computer is given by the equation: omega = 1 /23 + 1 /25 + 1 /25  = .001 + .00001 + .00001 = .00110 
This binary number is the probability of getting one of the three halting programs by chance. Thus, it is 
the probability that our computer will halt. Note that because program 110 halts we do not consider any 
programs that start with 110 and are larger than three bits—for example, we do not consider 1100 or 
1101. That is, we do not add terms of .0001 to the sum for each of those programs. We regard all the  
longer programs, 1100 and so on, as being included in the halting of 110. Another way of saying this is 
that the programs are self-delimiting; when they halt, they stop asking for more bits. 
 
Note: the situation is worse for undecidable problems! 
 
This is something very simple. It uses principles which we are thought in our senior years at school. It 
appeals physicist because it has maximum entropy – each bit is determined independently but not 
mathematicians because mathematicians don’t want logic to be randomised. For now, logic has just 
been reduced to philosophy and its role in mathematics concerning the development of logic stands 
outdated. It’s like Physicist sneer at them saying, “Aha! You’re no better than us!” 
 
This number is maximally unknowable. Since this is the case, there cannot be any algorithm that 
describes this number. This number is not computable because each time the computer has to perform 
a coin toss. So this cannot be compressed into anything further. It’s random.  
 
Equivalently, if we have a statement that our mechanical proof checker creates that way, there is no 
way we can decide if it is correct or not because the statement is determined randomly. It cannot be 
obtained from any “axiom”. 
 



So it turns out we can really never have a complete set of axioms. Hilbert wasn’t just wrong. He was very 
wrong.. for now. The stance is that no set of axioms can complete mathematics because even if we 
could formulate a complete mathematics, we’d need an infinite amount of patience. 
 
There have been many crises in mathematics. Pythagoreans had to face one. The philosophy of 
Pythagoreans can be contrasted to neo-Pythagoreans (supporters of Digital Physics or Digital Philosphy 
include Steven Wolfram, Edward Fredkin on www.digitalphilosophy.org, Seth Lloyd, Wheeler with "It for 
bit" and Tom Toffoli). Infinitesimal calculus was under attack when Bishop George Berkeley published 
his The Analyst subtitled “A discourse addressed to an infidel mathematician” using his famous line 
“ghost of departed quantities”. Euclidean Geometry with the parallel postulate (states that a line can 
only have only one another line which does not touch a point that is around the line). Mathematics has 
come out of those crises. The Church-Turing hypothesis for a Turing Machine that states that “Any 
algorithmic process can be simulated efficiently using a Turing machine” that was later modified to  Any 
algorithmic process can be simulated efficiently using a probabilistic Turing machine” because David 
Deutsch later realised that the universe obeys the laws of Quantum physics. The Church-Turing 
hypothesis was also later renamed to Church-Turing-Deutsch hypothesis. Some facts have also been 
changed. For example, how many of you believe 1+1 = 2? This equals zero in a specific (modular) 
arithmetic. 
 
Maybe one day we can discover a system or a reason to emerge free from paradoxes or form a 
mathematics that uses a modified version of the implication. 
 
Just for your interest, there is article in Scientific American by Gregory Chaitin titled “Limits of Reason”. 
There’s also an article in New Scientist, the British version of Scientific American called “Random Reality” 
that uses Gregory’s ideas to say that space-time really is random. It turns out that physicist are inspired 
by the limits of logic. First they weren’t but now they are. They can relate this to Maxwell’s Demon. 
 
If a system is consistent, then it is incomplete. This statement is isomorphic to our nature. If we believe 
things make sense and one sense only, we struggle to acquire a complete meaning because it is 
(currently) incomplete. This theorem tells us that our search is fruitless and that things will never end. It 
is only that it satisfies our aesthetic considerations. I think this is why mathematicians have had more 
fervour than ever even after Godel. 
  
If a system is consistent, then it is incomplete. The contrapositive of this statement is "If a system is 
complete, then it is inconsistent." The above understanding to this equivalent statement applies in a 
reversed direction. If we know everything, they will stop making sense. Is this where we are headed 
from Quantum Mechanics, or maybe deeper? Are we stuck in a dichotomy? 
  
Note: We have used logic to understand logic. We have appealed to the system to inform us about the 
system. Our thoughts think. We write "Urdu" in urdu. We write "English" in english. Is this a free 
domain? Where things go fuzzy? At a certain point, our desires parallel our ego. Limitless parallels 
infinity (these are distinct concepts). Making sense means not making sense. This is where I think the 
head and the tail of the Ouroboros are in contact. We stay on the rest of the body, we're happy. This is a 
vicious circle. (Our?) tamed --  or is it frenzied? -- logic is frought with ambitions. Or is it? 
  
It is inherent that a system will contain grey areas, no matter how strong their footing will be. Having 
said that, is it fruitless to appeal to a system? This appeals to religion, science, society and even 

http://www.digitalphilosophy.org/


humanity at large. Even the question "Who am I?" is largely self-referential and thus not free of a 
paradox. 
  
Are these systems our representations? That opens the door to another debate, which Neitzsche would 
have gladly been a part of, had he been alive. 


